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Resonance of a Rectangular Microstrip

Patch on a Uniaxial Substrate
Kin-Lu Wong, Member, IEEE, Jeen-Sheen Row, Chih-Wen Kuo, Member, IEEE, and Kuang-Chih Huang

Abstracc— Effects of uniaxial anisotropy in the substrate on

the complex resonant frequency of the microstrip patch antenna
are investigated in terms of an integral equation formulation.
The complex resonant frequency of the microstrip patch antenna
is calculated by using Galerkin’s method in solving the integral
equation. The sinusoidal functions are selected as the basis func-
tions, which show fast numerical convergence. Numerical results

also indicate that both the resonant frequency and the half-power

bandwidth are increased due to the positive uniaxial anisotropy
and, on the other hand, decreased due to the negative uniaxial

anisotropy.

I. INTRODUCTION

T HE RESONANT frequency of the microstrip patch an-

tenna, which has been found to be strongly dependent

on the substrate permittivity, is a very important factor to

be determined in microstrip antenna designs. It was also

pointed out that many substrate materials used for printed-

circuit antennas exhibit dielectric anisotropy, especially

uniaxial anisotropy [1 ]–[2]. However, most related studies

for the resonant frequencies of microstrip patch antennas

concentrate on the isotropic substrate case [3]–[7]. Recently,

the resonant frequency for the case of uniaxially anisotropic

substrate is studied [8], which shows the results for resonant

frequencies only. The information of the quality factor or

the half-power bandwidth is not repo~ed. In this paper

we extend the study and use the approach of the integral-

equation formulation for rigorous analysis of the complex

resonant frequency of a rectangular microstrip patch on

a uniaxial substrate. The Galerkin’s method is employed

to solve the integral equation for obtaining the complex

resonant frequency, which provides the information of

the resonant frequency and the half-power bandwidth of

the patch antenna. Details of the theoretical treatment is

presented in Sec. II. Various numerical results are shown

in Sec. III. The selection of the basis function is first

discussed. Both the effects of positive and negative uniaxial

anisotropy on the complex resonant frequency of the patch

antenna are shown. The half-power bandwidth is also

calculated and analyzed. Conclusions are summarized in Sec.

IV.
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II. THEORETICAL FORMULATION OF THE PROBLEM

Fig. 1 shows the geometry of a rectangular microstrip

patch on a uniaxial substrate characterized by the free-space

permeability Lo and the permittivity tensor ?, where

[1

Cxoo
F=q o Ez o . (1)

o 0 Ez

The substrate material is uniaxially anisotropic with the optical

axis along with the 2 axis: e. is the free-space permittivity. A

rectangular patch with length a and width b is printed on the

grounded substrate, which has a uniform thickness of d. The

surface current J on the patch can be expanded into a series+,
of basis functions ,Jz~ and Jym, Le.

(2)
m=l Trt=l

where I~n is the unknown coefficient to be determined for the

nth expansion mode of the surface current in the z direction

and lUm is for the mth expansion mode in the g direction. A
.

Fourier transform of Jzn and Jvn, can be written as

F.n(kz, kg) =
//

&m(~, y)e –J(L~+k,ti) d~ dy, (3a)
ZY

Fym(k., kg) =
//

~ym(x, y)e–J(~T’+kvy) dx dy, (3b)
ZY

where kr and ky are the wavenumbers in the z and y

directi~ns, respectively. The integral equation describing the

field E on the patch can be expressed to be

where ~ = 2QXE2 + ?Qrgy + $Qyz:~ + yQyyj and @ =

~~.l l~n~zn +Efi.l Iy~@y~: ko = u-, w is the wave
angular frequency. The quantity Q represents the Green’s

function and has been derived and given in [2]. The first

subscript for Q shows the x or y components of the generated

electric field and the second subscript is the orientation of

the infinitesjrnal electric dipole on the surface of the uniaxial

substrate. By applying the Galerkin’s method [9], the electric

field integral equation of (4) can be discretized into the

following matrix equation:

(5)
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Fig. 1. Geometty forarectangular patch onauniaxial substrate

where

m
–j30z;; . — J FlkQ..Fxndx. d~y, (6a)
x-h)

-m

—cc
w

2;:– –~soI F~lQYYFYmd~. d~y, (6d)
7rko

—w

F;k=Fzk(–kx, –ky),

F;l = Ful(–kJ, –kg),

and

k,n=l,2,..., N,

l,m=l,2,..., iM.

Since the resonant frequencies are defined to be the frequencies

at which the field and the current can sustain themselves

without a driving source, i.e. Vzn and VYm in (5) are van-

ished. Therefore, for the existence of nontrivial solutions, the

determinant of the [Z] matrix must be zero. This condition is

satisfied by a complex frequency .f = .f’ + j f that gives the

resonant frequency f’ and the half-power bandwidth 2f/’f’ of

the patch antenna.

III. NUMERICAL RESULTS AND DISCUSSION

The basis functions ~z~ and ~v~ for the following nu-
merical calculations are selected to be sinusoidal functions

of
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Fig. 2. Frequency shifts for different numbers of basis functions;

e~ = e = 2.35, a = 1.5 cm, b = 1.O cm. (a) Real frequency, (b) Imaginary
frequency.

where p, q, r ands are integers. The combination of p, q, r and

s depends on the mode numbers n and m. For the first three

modes, n = 1,2, and 3, the values of (p, q) are (1, O), (1, 1),

and (2, 1), respectively, and the values of (r,s) are (1, O), (1,

1), and (1, 2) for m = 1,2, and 3. The basis currents Jzn and

Jvm then vanish at x = +a/2 and y = +b/2, respectively.

Fig. 2 shows the calculation results for different numbers

of basis functions with e= = CZ = 2.35, a = 1.5 cm, and

b = 1.0 cm; N is selected to be 1 and M is varied from

1 to 3. The substrate thickness is normalized by the patch

width b and the frequency is normalized to be unity when

the substrate thickness approaching zero. The mode studied

here is the TMolo mode, the dominant mode for the current in

the y direction. The time dependence of the wave is assumed

to be e~”-’t. For the results shown in Fig. 2, the numerical

calculation can be seen to almost converge for N = 1, M = 1.

The results for IV = 1, M = 2 (shown by the line with open

rhombus) are almost the same as those for N = 1, M = 1

(the cross signs), and the results for N = 1, Lf = 3 (the line

with open rectangles) are only slightly diffcrmt from those

for N = 1, M = 1, Hence, for the rest of the studies, we

will use the basis functions of (7) with N = 1, M = 1 for

numerical calculations, It is estimated that the computation

time for N = 1, M = 1 on a HP720 workstation is about

360 seconds, which is only about 50% of that for the case

of N = 1, M = 2. Furthermore, it is found that the most
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Fig. 3. Real and imaginary frequency shifts versus the substrate thickness for

the isotropic (cL = e, = 2.35), positive uniaxial (cI = 1.S8, e= = 2.35),

and negative uniaxial (6I = 2.82.6, = 2.35) substrates; a = 1.5 cm.
b = 1.0 cm. (a) Real frequency, (b) Imaginary frequency.

time-consuming computation for the resonant frequency is the
calctdation of the impedance matrix element Z#~, Z~~, Z~nr

and Z## in (5), which involves double integral computations.

From the numerical results it is found that the values of Z~~

and Z: are on the order of about 10- 7–10–9 times those of

Z:; and Zy~. Therefore, the computation of Zj~ and Z~~

can be omitted which results in almost no difference in the

obtained results for the resonant frequency. The computation

time for the case of IV = 1, M = 1 with omitting the

calculation of Z~~ and Z~~ is further reduced to be only about

240 seconds on the HP720 workstation for the calculation of

one resonant frequency. Finally, the convergent solutions of

our calculation are also compared with the numerical results

obtained from the curve-fitting formula in [5], which are shown

by solid circles in Fig. 2. It can be seen that our numerical

calculations agree well with the results obtained from [5]. This

validates our calculations here and the following results for the

complex resonant frequencies due to the uniaxial anisotropy

in the substrate.

In Fig. 3 the real and imaginary frequency shifts versus

the substrate thickness (normalized by the patch width b) are

studied. The solid line represents the results for the isotropic

case (CZ = ~= = 2.35), while the line with open rhombus

is for the positive uniaxial substrate (Anisotropic ratio AR =

ez/cz = 1.88/2.35 = 0.8) and the line with cross signs is for the
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Fig. 4. Variations of the half-power bandwidth with the substrate thickness
for the case in Fig. 3.
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Fig. 5. Real and imaginary frequency shifts versus the substrate thickness
for the Isotropic (cZ = e. = 7.0), positwe uniaxlal (6Z = 5,6. e= = 7.0),
and negative uniaxial ( .sI = 8.4, e, = 7.0) substrates; a = 1.5 cm and
b = 1.0 cm. (a) Real frequency, (b) Imaginary frequency.

negative uniaxial substrate (AR = 2.82/2.35 = 1.2). It is found

that the real frequency, i.e. the resonant frequency, is shifted

to higher frequencies for the positive uniaxial case and, on

the other hand, is shifted to lower frequencies for the negative

uniaxial case. As for the imaginary frequency, it is increased

due to the positive uniaxial anisotropy and decreased due to

the negative uniaxial anisotropy. It can also be seen that the

higher the substrate thickness, the higher the frequency shifts

due to the uniaxial anisotropy. Fig. 4 shows the results for the
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Fig. 6. Variations of thehalf-power bandwidth with the substrate thickness

for the case in Fig. 5.

half-power bandwidth of the patch antenna, calculated from

2f/j’. Thepositive uniaxial anisotropy slightly increases the

half-power bandwidth, while thenegative uniaxial anisotropy

slightly decreases the half-power bandwidth, The variaticms of

the bandwidth due to the uniaxial anisotropy are also seen to

increase when the substrate thickness is increased. In Fig. 5

the case of higher permittivity with 6, = 7.0 is also studied.

Fig. 6 shows the results of the half-power bandwidth for the

case in Fig. 5. The frequency shifts and the variations of the

bandwidth due to the uniaxial anisotropy can be seen to be the

same as discussed in Figs. 3 and 4 with CZ = 2.35.

IV. CONCLUSIONS

The resonant frequency and half-power bandwidth of a rect-

angular patch antenna are studied using the integral equation

formulation. The sinusoidal basis functions for calculating the

current on the patch show fast numerical convergence. The

obtained results show that the uniaxial anisotropy effect on the

complex resonant frequencies increases with the increasing of

the substrate thickness. In general, the resonant frequencies

shift to higher or lower frequencies for positive or negative

uniaxial anisotropy in the substrate material. The pcisitive

uniaxial anisotropy is also found to slightly increase the

half-power bandwidth, while the negative uniaxial anisotropy

slightly decreases the half-power bandwidth.
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