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Resonance of a Rectangular Microstrip
Patch on a Uniaxial Substrate

Kin-Lu Wong, Member, IEEE, Jeen-Sheen Row, Chih-Wen Kuo, Member, [EEE, and Kuang-Chih Huang

Abstract— Effects of uniaxial anisotropy in the substrate on
the complex resonant frequency of the microstrip patch antenna
are investigated in terms of an integral equation formulation.
The complex resonant frequency of the microstrip patch antenna
is calculated by using Galerkin’s method in solving the integral
equation. The sinusoidal functions are selected as the basis func-
tions, which show fast numerical convergence. Numerical results
also indicate that both the resonant frequency and the half-power
bandwidth are increased due to the positive uniaxial anisotropy
and, on the other hand, decreased due to the negative uniaxial
anisotropy.

I. INTRODUCTION

HE RESONANT frequency of the microstrip patch an-

tenna, which has been found to be strongly dependent
on the substrate permittivity, is a very important factor to
be determined in microstrip antenna designs. It was also
pointed out that many substrate materials used for printed-
circuit antennas exhibit dielectric anisotropy, especially
uniaxial anisotropy [1]-[2]. However, most related studies
for the resonant frequencies of microstrip patch antennas
concentrate on the isotropic substrate case [3]-[7]. Recently,
the resonant frequency for the case of uniaxially anisotropic
substrate is studied [8], which shows the results for resonant
frequencies only. The information of the quality factor or
the half-power bandwidth is not reported. In this paper
we extend the study and use the approach of the integral-
equation formulation for rigorous analysis of the complex
resonant frequency of a rectangular microstrip patch on
a uniaxial substrate. The Galerkin’s method is employed
to solve the integral equation for obtaining the complex
resonant frequency, which provides the information of
the tresonant frequency and the half-power bandwidth of
the patch antenna. Details of the theoretical treatment is
presented in Sec. II. Various numerical results are shown
in Sec. III. The selection of the basis function is first
discussed. Both the effects of positive and negative uniaxial
anisotropy on the complex resonant frequency of the patch
antenna are shown. The half-power bandwidth is also
calculated and analyzed. Conclusions are summarized in Sec.
Iv.
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II. THEORETICAL FORMULATION OF THE PROBLEM

Fig. 1 shows the geometry of a rectangular microstrip
patch on a uniaxial substrate characterized by the free-space
permeability 1o and the permittivity tensor €, where

e; 0 O
?:Eo 0 €r 0. (1)
0 0 e,

z

The substrate material is uniaxially anisotropic with the optical
axis along with the 2 axis; ¢g is the free-space permittivity. A
rectangular patch with length a and width b is printed on the
grounded substrate, which has a uniform thickness of d. The
surface current J on the patch can be expanded into a series
of basis functions I;n and fym, ie.

. N - M
J = ZIwann + leymjg;ma (2)
n=1 m=

where I, is the unknown coefficient to be determined for the
nth expansion mode of the surface current in the x direction
and 1., is for the mth expansion mode in the y direction. A
Fourier transform of J—;n and fym can be written as

—

Fxn(kw»ky)://zf_;cn(a?,y)e_j(’””m+kyy) dedy, (3a)
zJy

ﬁym(kmky)://fym(x,y)e_f(’“”*"’yy) dr dy, (3b)
zJy

where k, and k, are the wavenumbers in the z and y
directions, respectively. The integral equation describing the
field £ on the patch can be expressed to be

o / / Q- Femitsthn) g ak,. @)
rJy

kg

where @ = $Qupd + #Quyil + §Qyud + §Qyyd and F =
Ziv:l I Fon +Zg{=1 Iymﬁym: ko = wy/tweo,w is the wave
angular frequency. The quantity ¢ represents the Green’s
function and has been derived and given in [2]. The first
subscript for ) shows the = or y components of the generated
electric field and the second subscript is the orientation of
the infinitesimal electric dipole on the surface of the uniaxial
substrate. By applying the Galerkin’s method [9]. the electric
field integral equation of (4) can be discretized into the
following matrix equation:

[ (ZE2Inxn  (Zel INxm }
(Zi5 ) srxn (ZE8)arxar

_ { (Lzn) N1 J _ { (Vin)nx1 } )

(Tym)arx1 (Vym)arx1
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uniaxial
substrate

Fig. 1. Geometry for a rectangular patch on a uniaxial substrate
where
—j30 7
leg;c‘ = J ﬂ F;kawan dz, dky7 (6a)
71’]60
—~00
30 |1
__.j "
Zlfgm = 7rk0 // kawaFym dkm dkya (6b)
T
= / F3,Qyo Fon dbs dky, (6c)
—330 1l N
75 = 2 / Fi\QuyFym dadhy,  (60)
F:k = ka(_km _ky)a
F;;l = Fyl(_k.m _ky)v
and

k,n=1,2,---,N,
Ilm=1,2,---,M.

Since the resonant frequencies are defined to be the frequencies
at which the field and the current can sustain themselves
without a driving source, ie. V,,, and V,, in (5) are van-
ished. Therefore, for the existence of nontrivial solutions, the
determinant of the [Z] matrix must be zero. This condition is
satisfied by a complex frequency f = f' + jf that gives the
resonant frequency f’ and the half-power bandwidth 2/ f/ of
the patch antenna.

III. NUMERICAL RESULTS AND DISCUSSION

The basis functions J;n and fym for the following nu-
merical calculations are selected to be sinusoidal functions

of
j;m = Zsin [Pal(a:+ g)] + COS [%)71 (y—l— g)}, (7a)
m
b
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Fig. 2. Frequency shifts for different numbers of basis functions;
€ = €; = 2.35,a = 1.5 cm, b = 1.0 cm. (a) Real frequency, (b) Imaginary
frequency.

where p, ¢, r and s are integers. The combination of p, ¢, and
s depends on the mode numbers n and m. For the first three
modes, n = 1,2, and 3, the values of (p, q) are (1, 0), (1, 1),
and (2, 1), respectively, and the values of (r,s) are (1, 0), (1,
1), and (1, 2) for m = 1,2, and 3. The basis currents J,, and
Jym then vanish at ¢ = +a/2 and y = £b/2, respectively.
Fig. 2 shows the calculation results for different numbers
of basis functions with ¢, = ¢, = 2.35,¢ = 1.5 c¢m, and
b = 1.0 cm; N is selected to be 1 and M is varied from
1 to 3. The substrate thickness is normalized by the patch
width b and the frequency is normalized to be unity when
the substrate thickness approaching zero. The mode studied
here is the TMg;¢ mode, the dominant mode for the current in
the y direction. The time dependence of the wave is assumed
to be e/“t. For the results shown in Fig. 2, the numerical
calculation can be seen to almost converge for N = 1, M = 1.
The results for N = 1, M = 2 (shown by the line with open
rhombus) are almost the same as those for N = 1, M =1
(the cross signs), and the results for N = 1, M = 3 (the line
with open rectangles) are only slightly different from those
for N = 1, M = 1. Hence, for the rest of the studies, we
will use the basis functions of (7) with N = 1,M = 1 for
numerical calculations. It is estimated that the computation
time for N = 1,M = 1 on a HP720 workstation is about
360 seconds, which is only about 50% of that for the case
of N = 1,M = 2. Furthermore, it is found that the most
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Fig. 3. Real and imaginary frequency shifts versus the substrate thickness for
the isotropic (e; = €. = 2.35), positive uniaxial (e, = 1.88,¢. = 2.35),
and negative uniaxial (e; = 2.82.¢, = 2.35) substrates; a = 1.5 cm,
b = 1.0 cm. (a) Real frequency, (b) Imaginary frequency.

time-consuming computation for the resonant frequency is the
calculation of the impedance matrix element ZF2, 7%, Z)°
and Z}'Y in (5), which involves double integral computations.
From the numerical results it is found that the values of Z;,
and Z}" are on the order of about 10~"-1072 times those of
Zg® and Z}Y. Therefore, the computation of Z,% and Z}”
can be omitted which results in almost no difference in the
obtained results for the resonant frequency. The computation
time for the case of N = 1,M = 1 with omitting the
calculation of Z¥, and Z/" is further reduced to be only about
240 seconds on the HP720 workstation for the calculation of
one resonant frequency. Finally, the convergent solutions of
our calculation are also compared with the numerical results
obtained from the curve-fitting formula in [5], which are shown
by solid circles in Fig. 2. It can be seen that our numerical
calculations agree well with the results obtained from [5]. This
validates our calculations here and the following results for the
complex resonant frequencies due to the uniaxial anisotropy
in the substrate.

In Fig. 3 the real and imaginary frequency shifts versus
the substrate thickness (normalized by the patch width b) are
studied. The solid line represents the results for the isotropic
case (e, = €, = 2.35), while the line with open rhombus
is for the positive uniaxial substrate (Anisotropic ratio AR =
€x/€. = 1.88/2.35 = 0.8) and the line with cross signs is for the
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Fig. 4. Variations of the half-power bandwidth with the substrate thickness
for the case in Fig. 3.
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Fig. 5. Real and imaginary frequency shifts versus the substrate thickness
for the 1sotropic (€; = €; = 7.0), positive uniaxial (¢, = 5.6.¢. = 7.0},
and negative uniaxial (e; = 8.4,e. = 7.0) substrates; ¢« = 1.5 ¢cm and

b = 1.0 cm. (a) Real frequency. (b) Imaginary frequency.

negative uniaxial substrate (AR = 2.82/2.35 = 1.2). It is found
that the real frequency, i.e. the resonant frequency, is shifted
to higher frequencies for the positive uniaxial case and, on
the other hand, is shifted to lower frequencies for the negative
uniaxial case. As for the imaginary frequency, it is increased
due to the positive uniaxial anisotropy and decreased due to
the negative uniaxial anisotropy. It can also be seen that the
higher the substrate thickness, the higher the frequency shifts
due to the uniaxial anisotropy. Fig. 4 shows the resuits for the
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Fig. 6. Variations of the half-power bandwidth with the substrate thickness
for the case in Fig. 5.

half-power bandwidth of the patch antenna, caiculated from
2f/f'. The positive uniaxial anisotropy slightly increases the
half-power bandwidth, while the negative uniaxial anisotropy
slightly decreases the half-power bandwidth. The variations of
the bandwidth due to the uniaxial anisotropy are also seen to
increase when the substrate thickness is increased. In Fig. 5
the case of higher permittivity with €, = 7.0 is also studied.
Fig. 6 shows the results of the half-power bandwidth for the
case in Fig. 5. The frequency shifts and the variations of the
bandwidth due to the uniaxial anisotropy can be seen to be the
same as discussed in Figs. 3 and 4 with €, = 2.35.

1V. CONCLUSIONS

The resonant frequency and half-power bandwidth of a rect-
angular patch antenna are studied using the integral equation
formulation. The sinusoidal basis functions for calculating the
current on the patch show fast numerical convergence. The
obtained results show that the uniaxial anisotropy effect on the
complex resonant frequencies increases with the increasing of
the substrate thickness. In general, the resonant frequencies
shift to higher or lower frequencies for positive or negative
uniaxial anisotropy in the substrate material. The positive
uniaxial anisotropy is also found to slightly increase the
half-power bandwidth, while the negative uniaxial anisotropy
slightly decreases the half-power bandwidth.
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